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Abstract—In this work we integrate the Spherical Camera
Model for catadioptric systems in a Visual-SLAM application.
The Spherical Camera Model is a projection model that unifies
central catadioptric and conventional cameras. To integrate
this model into the Extended Kalman Filter-based SLAM we
require to linearize the direct and the inverse projection. We
have performed an initial experimentation with omnidirectional
and conventional real sequences including challenging trajec-
tories. The results confirm that the omnidirectional camera
gives much better orientation accuracy improving the estimated
camera trajectory.

Keywords-Computer vision systems and applications; Vision
sensors.

I. INTRODUCTION

The use of omnidirectional cameras in robotics has in-
creased in the last years. The main reason is their wide
FOV. There are many omnidirectional systems, but the
most used are the catadioptric systems, compound by a
mirror and a camera. These systems have been used in
applications such as surveillance [1], robot navigation [2]
and 3D reconstruction [3]. In this work we study the ap-
plication of monocular omnidirectional vision in one of the
essential problems of autonomous perception and robotics:
Simultaneous Localization and Mapping (SLAM).

SLAM problem [4] appears when an autonomous vehicle
does not know neither its position nor the map of its
surroundings, and only have partial measurements of the
environment to navigate through it. There are many SLAM
approaches that use conventional cameras as sensor [5], [6].
However just a few SLAM approaches use omnidirectional
systems [7], [8], [9]. In this work we use an Extended
Kalman Filter (EKF) algorithm to deal with the SLAM
problem.

To obtain metric information from any vision system
a projection model is required. Geyer and Daniilidis [10]
propose an unified method to model any central catadioptric
system. This model was extended by Barreto and Araujo
[11] so that it can model central catadioptric systems and
conventional cameras, and it is known as the Spherical
Camera Model. This method models every system by a
unit sphere and a conventional projection. We integrate this
projection model into the EKF based SLAM application.

Figure 1. Spherical Camera Model

The wide FOV of the omnidirectional systems is the
main advantage over the conventional vision systems. An
omnidirectional system can keep tracking of image points in
all directions while a conventional system can easily loose
tracked points if they are not in front of the camera. In
order to prove the advantages of the omnidirectional vision
in SLAM we perform an initial comparison between an
SLAM system using omnidirectional vision and the same
application using conventional vision.

II. THE SPHERICAL CAMERA MODEL

First at all we present the projection model for the
omnidirectional systems presented in [10] and extended in
[11]. This model is widely used with omnidirectional vision
systems.

The projection of a point in the image is explained as
follows (Fig. 1). The scene point X is referred to the camera
coordinates centered in O. First, we compute the projection
of the scene point X to the intersection of the unit sphere
and the line joining the point and the center of the sphere
O. There are two intersection points, x+ and x−, but just
one is fisically true. This fisically true point is projected to a
virtual projection plane π trough the virtual projection centre
CP = (0, 0, −ξ)T. The new point is x′. These two steps



are coded in one equation:

x′ = ~(X) =
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The next step transforms the virtual plane π in the image
plane πIM through a homographic transformation HC .

x′′ = Hcx′ (2)

Hc = KcMc (3)

where Kc includes the camera internal parameters and Mc

includes the mirror and system parameters [11]. Finally, the
image coordinates are computed by the next function:
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The parameter of the model ξ define the shape of the
mirror we work with. For conventional cameras ξ = 0. ξ = 1
for central catadioptric systems with parabolic mirror, and
0 < ξ < 1 with hyperbolic mirror.

III. LOCALIZATION AND MAPPING

An autonomous robot must be able to navigate through
unknown environments. With SLAM techniques a robot can
build a map of the environment and keep track of its pose in
this map using noisy measurements of the environment. In
Visual SLAM these measurements are characteristic points
from the images.

The most used SLAM algorithms are based on the Kalman
Filter, a filter that predicts the state of linear systems. As the
geometry impose nonlinear functions the Extended Kalman
Filter (EKF) [4] is used. The EKF linearize the non-linear
relations by approximating them to its first order Taylor
series.The EKF algorithm is divided into two parts. In the
first part, Prediction, the new state of the system xk+1 is
estimated from the previous timestep state xk. The second
part of the algorithm, Update, uses the measurements of
the environment z to improve this prediction. Every state
variable is represented by its mean and its covariance. In
our case the system state is coded in xk.

xk = (r, q, V, ω︸ ︷︷ ︸
Camera state

, xi, yi, zi, θi, φi, ρi︸ ︷︷ ︸
Point

)T (5)

where r(3×1) is the system pose, q(4×1) is the quaternion
of the orientation and V(3×1) and ω(3×1) are the linear and
angular velocities. The points are coded by inverse depth
[12]. (xi, yi, zi) is the pose of the camera the first time it
saw the 3D point i, θi and φi are the angles that determinate
the ray pointing to the 3D point and ρi is the inverse depth
of the point.

A. The Spherical Camera Model in the EKF

The EKF algorithm needs the first derivative of the mea-
surement equation. As explained before we use the Spherical
Camera Model in the measurement equation. So, first at all
we have formulated the direct projection derivatives.

• Jacobian of the Spherical Camera Model

J = JfuHcJ~ (6)

Jfu =

(
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z′′2
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ρ
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where ρ =
√

x2 + y2 + z2.
To initialize new features we need to estimate the co-

variance of the new feature from the uncertainty of the
image point. Through the inverse projection of the model
is possible to estimate the 3D ray where an image point
lies. The estimation of the covariance of a new feature
can be done through the jacobian of the inverse projection.
The inverse projection starts with the image coordinates
u = (u, v)T. The point x′′ is x′′ = (u, v, 1)T. The
equations of the inverse model are

x′ = Hc
−1x′′ (9)

x = ~(x′)−1 =

 x′

y′

z′ − ξ(x′2+y′2+z′2)
ξz′+χ

 (10)

where χ =
√

(1− ξ2)(x′2 + y′2) + z′2.
So, secondly we formulate the inverse projection deriva-

tives.
• Jacobian of the Spherical Camera Model inverse pro-

jection

J = Hc
−1

 1 0 0
0 1 0
∂z
∂x′

∂z
∂y′

∂z
∂z′

 (11)
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where χ =
√

(1− ξ2)(x′2 + y′2) + z′2 and ρ2 = x′2+
y′2 + z′2.
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Figure 2. Selected trajectories

Conventional image Omnidirectional image
Figure 3. Angular resolution of the vision systems

IV. EXPERIMENTS WITH REAL IMAGES

In this section we present the experiments performed
with a Visual SLAM1 application using conventional and
omnidirectional images. The measurement points are cod-
ified by inverse depth parametrization [12]. The Spherical
Model is used as measurement equation and combined with
SIFT [13] features as measurement points. In both type of
images we use a SIFT-based matching approach. We match
the features in the next frame located inside an uncertainty
ellipse considering a 95% of confidence.

We use two image sequences provided by The Rawseeds
Project2. They were acquired with a hyper-catadioptric cam-
era and with a conventional camera. We have calibrated the
hyper-catadioptric camera [14] for better results. The ground
truth is given by an improved odometry. To better analyze
the behavior of these two approaches we have split the whole
trajectory in partial trajectories which result hard to follow
for the conventional SLAM. We choose four trajectories to
perform the comparison (Fig. 2). The number of frames for
the omnidirectional sequences goes from 400 frames for
the first trajectory to 850 frames for the third one. The
conventional sequences are compound by two times the
number of frames of the omnidirectional ones in order to
avoid the trajectory difficulties of the conventional vision.

Before making a valid comparison we evaluate the angular
resolution of the cameras. The angular resolution of both
systems is equivalent (see Fig. 3). All values are close to
200 pixels per radian.

Using monocular vision we cannot estimate the real scale
of the 3D points. So, we decide to use the orientation angle
to compare the results since camera translation and 3D

1http://www.robots.ox.ac.uk/˜SSS06/Website/Practi-
cals/˜SSS06.Prac2.MonocularSLAM.tar.gz

2http://www.rawseeds.org

coordinates of points are affected by scale. The estimated
results are compared to those given by the odometry. This
scale problem has been solved in the literature using stereo
vision or using additional sensors.

Fig. 4 shows the SLAM results for the four selected
trajectories. The dashed black lines correspond to the odom-
etry ground truth, the blue line is the estimation with the
omnidirectional camera and the red line the estimation with
the conventional camera. Fig. 4(a), 4(b) and 4(c) shows
the trajectory and orientation results for the three first
trajectories, respectively. In the three cases the omnidirec-
tional estimation of the trajectory follows the real one. The
conventional trajectory also follows the real trajectory, but
the solution is worse than the omnidirectional one. The
orientation results for the omnidirectional camera are better
than the conventional camera results, the values of the mean
of the absolute error for the omnidirectional camera are
lower that the conventional camera ones. Fig. 4(d) shows
the trajectory and the orientation results for the fourth
trajectory. This trajectory includes many turns. However, the
estimation with the omnidirectional camera performs all the
turns correctly. In this case we can see clearly the scale
change in the same estimation. With the conventional camera
the estimated trajectory do not follow the real movement.
In the case of the orientation the errors are bigger than in
trajectory four. For the omnidirectional system the mean of
the absolute orientation error is 0.29 radians and for the
conventional camera is 0.62 radians.

Table I shows the mean of the absolute orientation error
for every trajectory and the two vision systems. These errors
have been estimated with the SLAM orientation and the
odometry orientation. For every trajectory the error with the
omnidirectional camera is smaller that with the conventional
camera, although we use double number of frames with that
system. The mean absolute error for the omnidirectional
system is 0.10 radians and for the conventional system is
0.29 radians.

Table I
MEAN ABSOLUTE ERROR (MAE) OF ORIENTATION IN RADIANS

Trajectory Omnidirectional Conventional
1 0.04 0.16
2 0.11 0.15
3 0.07 0.22
4 0.29 0.62

MAE 0.10 0.29

V. CONCLUSIONS

We have developed a visual SLAM application based
on the Extended Kalman Filter that can use catadioptric
omnidirectional cameras and perspective cameras. To do this
we have formulated the Spherical Camera Model Jacobians
needed by the EKF. With that new application we have tested
different image sequences of a hyper-catadioptric system
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Blue line: Omnidirectional camera estimation; Red line: Conventional SLAM estimation; Dashed black line: Odometry values;

Figure 4. SLAM results for the selected trajectories. (a) shows the results for the first trajectory, (b) for the second trajectory, (c)) for the third trajectory
and (d) shows results for the fourth trajectory. Each figure is compound by the trajectory and orientation plots.

and a perspective camera. Besides we have compared the
results obtained of this testing. This comparison has shown
the superiority of the omnidirectional systems in monocular
visual SLAM.
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