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Abstract

Autonomous navigation and recognition of the environ-
ment are fundamental abilities for people extensively stud-
ied in computer vision and robotics fields. Expansion of
low cost wearable sensing provides interesting opportuni-
ties for assistance systems that augment people naviga-
tion and recognition capabilities. This work presents our
wearable omnidirectional vision system and a novel two-
phase localization approach running on it. It runs state-
of-the-art real time visual odometry adapted to catadiop-
tric images augmented with topological-semantic informa-
tion. The presented approach benefits from using wearable
sensors to improve visual odometry results with true scaled
solution. The wide field of view of catadioptric vision sys-
tem used makes features last longer in the field of view and
allows more compact location representation which facil-
itates topological place recognition. Experiments in this
paper show promising ego-localization results in realistic
settings, providing good true scaled visual odometry esti-
mation and recognition of indoor regions.

1. Introduction

The ability to navigate effectively in the environment and
recognize places, objects and signals is fundamental and
natural for people. However the solution is not always ob-
vious and turns more complicated when we are in unknown
or difficult to access environments or in daily situations for
visually impaired people. In the last decades plenty of re-
search in the robotics and computer vision fields has tried
to replicate these two important tasks in realistic scenarios.
At the same time, quickly evolving technologies are provid-
ing us with a wide range of high performance miniaturized
computers and sensors. These conditions have raised op-
portunities for many new assistance applications for people
through the use of wearable intelligent sensors. Broad range
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Figure 1. (a) Wearable omnidirectional vision system built on a
helmet. (b) User wearing the helmet during experiments.

of different platforms and sensors have been used but prob-
ably cameras provide one of the richest data and lower cost
platforms. Since initial prototypes such as [13], we find
plenty of proposed wearable sensor applications [15]. Re-
cently we find wearable systems proposed for recognizing
daily activities [27, 26]; other recent works, closer to ours,
are oriented to specific assistance such as visually impaired
or elderly recognition and navigation aid systems [10, 14].

Contributions. This paper presents our wearable omni-
directional vision system (see Fig. 1), the online available
datasets' acquired with it and a method for personal local-
ization, which establishes the basic framework for the per-
son guidance. Visual odometry is running in real time, and
topological localization is efficiently obtained every few
meters. Two steps are being developed to get fully func-
tional system: connecting both modules in real time and
augmenting path and localization provided on the topologi-
cal map with voice commands for the user.

Our prototype exploits the advantages of omnidirec-
tional catadioptric systems, a novelty compared to related
works, which allows more compact and robust represen-
tation of the environment. The proposed localization sys-
tem builds on a recently proposed real time omnidirectional
SLAM method [8]. In this paper we validate its suitability
for indoor environments, where catadioptric vision systems
suffer bigger distortions, and enhance it with topological-
semantic information required for human guidance.

Uhttp://robots.unizar.es/omnicam



Human-centered localization vs. robot visual localiza-
tion. Our method adapts typical hierarchical localization
approaches from mobile robotics to human-centered appli-
cations. We run an accurate metric ego-motion estimation,
transparent to the user, and a topological/semantic localiza-
tion, necessary to guide user motion and provide environ-
ment information. The presented approach takes into ac-
count several particularities when camera is worn by a per-
son as opposed to mounted on an robotic platform. On one
hand, a person may not need accurate metric estimation of
its current position, but more general/semantic information
of the region traversed. On the other hand, it is still rel-
evant to keep accurate track of the person motion through
the visual odometry, to provide necessary warnings, infor-
mation and commands at the right location. Finally, prior
knowledge on people motion provides interesting hints to
accurately estimate the scale of the visual odometry. This
scale is typically unknown without prior information and
solutions are usually given up to a scale factor. Here this is
solved thanks to the fact of using a wearable platform.

Vision system for personal localization approach.
Fig. 2 summarizes our approach. It consists of two mod-
ules. The first one executes a six degrees of freedom real-
time SLAM algorithm, which estimates the odometry of the
person while walking and allows us to keep track of the user
trajectory (Fig. 2b). This module provides a true scaled and
accurate metric estimation and sends a request to the topo-
logical module (Fig. 2a) every two meters walked. The sec-
ond module runs a topological localization algorithm which
can provide the user with navigation instructions, i.e., path
across the topological graph to reach given goal, and in-
formation about the area of the environment that is being
traversed. This module requires a visual memory or model
of the environment (Fig. 2c), which is previously acquired
with the same vision system and includes labels and topo-
logical information of the regions in the environment.

2. Related Work

There is an increasing interest in devise robotics sys-
tems for personal assistance, and as already mentioned, cur-
rent miniaturization of sensors has also raised the amount
of wearable assistance systems. We find earlier systems
that adapt robot localization methods to wearable omnidi-
rectional vision systems [22]. Many other general vision-
based approaches have been adapted to human navigation
assistance, usually considering cameras enhanced with ad-
ditional sensors to measure sound [10] or depth [14]. Our
method adapts the use of omnidirectional images as a key
characteristic. Many localization systems take advantage of
wide field of view cameras to acquire more compact visual
models and perform robust operations with just one wide
field of view image, e.g., in [7] an approach for topological
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Figure 2. Diagram of the localization and guidance approach.

mapping and navigation using a catadioptric vision system
is presented. Another related approach is the vision based
navigation assistant presented in [! 1], which builds a topo-
logical map using a wide field of view system composed of
four cameras mounted on the user’s shoulder.

A natural approach to vision-based navigation is to ex-
plicitly estimate metrical ego-motion from images. The
problem of recovering both, the camera motion and the
structure of the environment is known as Structure from
Motion in computer vision literature and Simultaneous
Localization and Mapping (SLAM) in robotics literature.
Achieving efficient performance remains as a long-standing
problem because even the best metric SLAM systems de-
grades with time. In order to cope with the complexity and
scale of real environments, topological approaches [7, 3]
have been proposed. This type of approach must build an
annotated topological map of the environment by capturing
location dependent scene appearance. Moreover, topologi-
cal annotations lead to further semantic environment infor-
mation that facilitates human interaction.

Topological and Semantic Visual Localization. Topo-
logical modeling of the environment has been studied for a
long time. Recently, interest has increased due to its advan-
tages to deal with large environments and to augment the
models with semantic information. Different approaches
are used to augment topological models with additional in-
formation, e.g., with human supervision to achieve repre-
sentations closer to human concepts [30], or with weaker
human supervision to learn semantic models from a few ini-
tial labeled samples [23].

Topological localization consists of finding the most
similar reference image in the model with regard to our cur-
rent view, in order to retrieve the stored/learned informa-
tion related to that location. Vision based topological lo-
calization is closely related to the more general problem of
place or scene recognition, such as this recent work for rec-



ognizing types of indoor locations [20]. Topological maps
are usually built on top of a hierarchy of different map lev-
els [12], e.g., a global topological map that connects smaller
local metric maps [29].

Omnidirectional Visual SLAM. Visual SLAM has been
addressed both using monocular and stereo systems. Stereo
systems allow the map and visual odometry of the camera
to be completely estimated through triangulation of the ob-
served landmarks of the scene. On the other hand monoc-
ular systems only allow an up-to-scale scene reconstruction
due to the impossibility of directly measuring landmarks
depth from just one image. Nevertheless, Monocular Visual
SLAM [4] presents high potential, since these cameras are
cheaper, compact and easier to calibrate.

An improvement to monocular visual SLAM is to in-
crease the field of view of the system by using omnidi-
rectional cameras. Features typically last longer in the
field of view, specially when large camera rotations occur.
The increased lifespan of the features on the image trans-
lates in a better estimation of the position of the features
on the map, a lower need to initialize new features and
an increased robustness. However omnidirectional cam-
eras, in particular catadioptric systems, involve a more com-
plex projection model, important image deformation, dis-
tortion and variable scale in the image. Some visual SLAM
approaches using omnidirectional cameras have been pro-
posed [28, 25, 21]. All these works show advantages of
omnidirectional cameras to deal with this problem.

3. Topological/Semantic Localization Module

The topological localization module from our system re-
lies on a previously built model. First initial global local-
ization is computed, and the user can ask the system for a
path to reach any other region in the modeled environment,
obtained following standard graph search strategies. The
topological model could be automatically generated, but in
our current version is based only on human supervision.

Given current view, topological localization step con-
sists of finding the most similar image among the reference
views in the environment model. Key issues are how to rep-
resent and compare the similarity between images, cf. sec-
tion 3.1, and how to select which images from the reference
set are possible localization candidates, cf. section 3.2.

3.1. Image representation

For more efficient and compact representation, we use
the Gist based descriptor for catadioptric images, detailed
in [16]. Due to the camera orientation in the helmet, if we
obtain four partitions as shown in Fig. 3, they correspond
to the main motion directions, according to the Manhat-
tan World Assumption. With this representation, the om-
nidirectional image Gist g is composed by four conven-

(b)

Figure 3. (a) Omnidirectional image acquired with the Wearable
OmniCam system. Red arrow points front direction of the helmet.
(b) Partitions performed to obtain the Gist based description.

tional Gist descriptors [18], one computed for each image
part (front, left, back and right): g = [g¢, g1, 9, g»]. The
similarity between two images using this representation is
obtained based on the Euclidean distance between the de-
scriptors. We compute the minimum distance that can be
obtained between one image and the four possible permu-
tations of the four partitions of the second image. These
permutations correspond with the four possible alignments
of the sectors of the image and will provide us with the best
alignment of the two evaluated images. Being g and g’ the
descriptors of two images, the distance between them is:

dist(g,g') = mnin(de(g»ﬁm(g}zzw))» (D

where 7,,,(g,.) is the " circular permutation of the de-
scriptor g’ component vectors (m = 1,2,3,4) and d, the
Euclidean distance between the Gist descriptors of two om-
nidirectional images.

For more accurate computations we use local features, in
particular standard extraction and correspondence search of
SUREF [1], which has been shown to provide good perfor-
mance on the same kind of catadioptric images we use [17].

3.2. Topological Localization and Guidance

Topological localization of the user can be obtained on
two different situations: either all reference images should
be considered as possible localization candidates (global lo-
calization) or prior knowledge allows a reduced set of can-
didates (continuous localization).

Global Localization. When the system is initialized or
re-started we do not consider any prior about current lo-
calization. Re-start can occur when the visual odometry
module is inconsistent or when it is lost. The user could
be anywhere and current view is compared to all reference
images through a hierarchical process:

1. A small set of top-k candidates similar to the query is
found using representation and similarity from (1).

2. The k selected candidates are re-ranked according
to the amount of local SURF feature correspon-
dences (obtained with standard nearest neighbor ap-



proach). Reference candidate image with more corre-
spondences is given as the topological location.

Continuous Localization. While the user is moving, we
assume that between two consecutive queries the user can
stay in the same topological region or move to one of the
neighboring regions (connected by at most two steps) in the
topology. Therefore, we have a reduced set of candidate
locations. Similarity from query to these candidates is eval-
uated only using Gist descriptors as defined in (1).

Continuous topological information would allow the sys-
tem to check if current location is on the path given to the
user to achieve the goal or if the system should provide
some reminder, new command or re-planification.

4. Visual Odometry Module

As described, our proposed SLAM module intends to
keep track of the motion performed by the person to be able
to guide it through the environment. This section describes
how we compute the visual odometry of the person, since
we do not keep track of the estimated landmarks locations
(map) but only the camera (person) location at each time.

We use the approach presented in [8], that proposes to
combine state of the art robust EKF monocular SLAM [2]
with an omnidirectional sensor. As catadioptric images in-
volve a high deformation of the world, linear transforma-
tions are applied to the features to improve the matching
results. This transformation consists on a rotation and scal-
ing of the feature patch. The rotation is computed from the
variation of the polar angle of the feature in the image, and
the scale patch factor is computed as follows:

Rim,ini
Dcurrent f + f(f’ M)a

where D; is the distance from the landmark to the camera
location at moment ¢, I2;,, ¢ is the distance of the projected
feature to the principal point of the image and & and ~ are
camera-mirror parameters. This formula encodes not only
the natural change of the patch size due to the variation of
the distance between the corresponding landmark and the
camera but also the change of the scale in the radial direc-
tion of the image induced by the mirror.

k= (@3]

True scaled visual odometry. It was previously stated
that one of the problems of monocular SLAM is the impos-
sibility to observe the scale of the scene. This problem leads
to a scale drift along the camera trajectory which result in
a deformation of the final map and trajectory reconstruc-
tion. Some authors have proposed different ways to solve
the scale problem of monocular SLAM either by combin-
ing the visual data with information from other sensors [6]
or using some kind of prior distance [24].

To obtain a true scaled estimate of the visual odometry
we apply the algorithm presented and detailed in [9]. This
approach takes advantage of the induced head vertical oscil-
lation during walking, whose frequency matches up with the
step frequency. This is an interesting approach only valid
for wearable cameras.

5. Experiments

This section presents the experiments run to validate
our localization modules in a typical indoor environment
and provides more detailed description of the prototype de-
signed and dataset used.

5.1. Wearable omnidirectional camera

The wearable omnidirectional vision system presented
consists of a set of small and light sensors mounted on a
helmet that will be carried by a person. The whole prototype
(Fig. 1) consists of a laptop, to be carried on a backpack,
that runs all the processing and controls the following set of
USB sensors, which do not require any extra power supply:

e An omnidirectional catadioptric camera. The main
sensor of the system is an omnidirectional camera manufac-
tured by Vstone?, with dimensions 47mm x 80mm x 47mm.
This catadioptric camera provides images with resolution of
1024x768 at a frame rate of 15fps.

e An inertial measurements unit (IMU). This IMU man-
ufactured by Xsens® contains 3 accelerometers, 3 gyro-
scopes and 3 magnetometers. It is attached to the catadiop-
tric camera and provides the attitude of the camera.

e A GPS. When operating outdoors, this sensor can pro-
vide the position of the system with up to 5m error, however
we can not make proper use of this sensor in the indoor ex-
periments presented next in this paper.

5.2. Dataset and experimental settings

This dataset has been acquired in a three floor building
and traverses different types of regions: corridors, research
laboratories, offices, classes, etc. Acquisitions have been
performed by a person wearing the helmet, so the dataset
suffers the typical motion of a person walking. Sequences
can be downloaded from the web, as well as additional data
acquired with the prototype. For this work the only sensor
used is the calibrated omnidirectional camera [19].

As described in Sec. 3, the topological/semantic localiza-
tion module needs a visual model of the environment. The
construction of this model is performed with a separated
training acquisition obtained more than six months before
the testing sequences (may201 1 _sequence). Figure 4 shows
the map of the three floors of the building highlighted with
different colors, depending on the type of area traversed

Zhttp://www.vstone.co.jp
3http://www.xsens.com/



PLACES (P)
I Corridor (1)
B Small Room (2)
B Medium Room (3)
Big Room (4)
TRANSITIONS (T)
H Door (1)
I Jamb (2)
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[El Elevator (4)
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Figure 4. Training data. Map of the building where the dataset has
been acquired. Different colors show different area type traversed.

during this training sequence. The gray areas are parts not
covered by the training data. This sequence consists of
20905 omnidirectional images with a manual ground truth
labeling of the type of areas traversed. We consider the main
spaces of a building, like corridors or rooms, as Places.
Transitions label comprises all the areas joining different
Places: doors, jambs, stairs and elevators. The areas la-
beled as Transitions start and end about 0.5 meters before
and after the Transition has been crossed.

Test images come from an additional acquisition
(march2012_sequence) during a different trajectory con-
sisting of 7027 frames. Ground truth for the topologi-
cal/semantic localization is manually assigned similarly to
the training data labels. Ground truth for the SLAM module
evaluation was obtained from the plans of the building and
Google Maps tools*. The test sequence is divided in two
parts (Fig. 5) whose lengths are 392 m and 75 m. Division
is made at the point where the SLAM module shows an ex-
cessive growth of the uncertainty ellipses of the features on
the image or an obvious deviation from the true path. Then,
the system needs to perform another global localization and
start a new SLAM estimation.

Note that we do not get a global metric and accurate
localization for all parts, since different SLAM results are
never merged. However, it is not needed, because we only
need to keep track of the topological regions traversed to
guide the person with semantic commands. Therefore, main
interest in the SLAM is to achieve good local estimation to
keep track of current user movements and scale to provide
equally separated images to the topological localization.

“http://support.google.com/maps/

Tél
Figure 5. Test data. Ground truth corresponding to the first part
(red) and the second part (blue) of test trajectory (solid line indi-
cates 1st floor, dashed line indicates 2nd floor).

5.3. Performance evaluation

Visual odometry module. An important goal of our ex-
periments was to achieve good visual odometry estima-
tion to avoid using frequently the costly global localization
(global localization needs to perform much more and slower
comparisons that continuous localization) and to be able to
track the user movements in the environment. Visual odom-
etry is obtained with the scaling algorithm detailed in [9].
Following this method, to estimate the walking speed as a
function of the step frequency, we need a prior computation
of parameters « and 3 for the user wearing the camera. We
measured the time spent to walk a fixed distance at differ-
ent step frequencies and performed a power fitting on the
experimental data to obtain v = 0.329 and 5 = 1.534.

The raw un-scaled SLAM estimation used our modifica-
tion for catadioptric systems of the real-time approach for
conventional cameras [5]. The trajectory is computed in
real time, each step of the SLAM algorithm takes an aver-
age of 0.058s, while camera acquires frames every 0.067s.

Fig. 6 shows the final reconstruction of the visual odom-
etry without using topological information and applying our
scaling algorithm. Although not fitting completely with the
ground truth, mainly due to the accumulation of errors in
the estimation of rotations, it can be observed that the final
visual odometry estimation preserves the shape and size of
the ground truth trajectory. Notice how the scale is quite
accurately estimated, especially with respect to the raw es-
timation from the SLAM algorithm. Also the compari-
son with the estimation resulting from applying a uniform
scale factor shows that the method to estimate the scale is
able to cope with a large scale drift along the trajectory.
Quantitative measure of these improvements is given by the
estimated total trajectory length: our approach estimates
434m and 95m for part 1 and 2 respectively, very close to
those 392m and 75m given by measurement tools used as
ground truth: respectively. It is a significant improvement



80,

== Ground Truth

= Raw Visual odometry|
Uniform scale factor

=== Qur approach

60,

40|
E
>
20|
0
=20
20
15|
10)
—~ 5
E
> 0
-5
-10)
135 -10 0 10 20 30 40
x(m)
(b)

Figure 6. Visual odometry estimation from different approaches.
(a) part 1. (b) part 2.

compared to the raw odometry estimations, with lengths of
275m and 20m respectively. Besides, note that a person tra-
jectory is barely a straight line, but this is not considered
by the measurement tools, giving usually shorter measure-
ments.

Semantic/Topological localization. This section summa-
rizes the topologic-semantic localization evaluation. Quan-
titative evaluation is obtained by measuring how many test
images got assigned the correct topological cluster.

First we evaluate the global localization algorithm at
each test image, i.e., we compare every test image with all
reference images for different values of k, as described in
Section 3.2. We observe that k¥ = 10 provides the best re-
sults, 88% and 42% correct localization tests for part 1 and
part 2, respectively. Larger or smaller values of k provided
lower performance, then & = 10 will be used in following
experiments. We should note that the global localization
step is required only at the beginning of the processing of
each part, and it provides the correct topological location
in the two starting points on our dataset as shown in Fig. 7
(green arrows point to the starting location for each part).

Continuous localization is also evaluated at every test
image. Table 1 shows the results using different amount
of reference images. The query image is compared only to
every step images from the reference trajectory.

Fig. 7 shows the topological localization obtained apply-
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Figure 7. Topological localization obtained for the two test parts
(a) and (b) and the ground truth available (c) with the reference
topological regions. Each color and number points the reference
topological region assigned to the nearby group. As previously,
dashed lines show locations in the second floor.

Part 1 Part 2
step=5 | 87.9% | 64.6%
step =10 | 79.1% 25%
Table 1. Correct continuous localization for the 2 test parts (k=10).

ing the whole approach. Global localization is run at the
beginning of each part, and continuous localization is run
for every frame that visual odometry module requests while
the user moves. We consider each set of contiguous im-
ages which obtained the same topological label as a clus-
ter. Each number plotted in the figure corresponds to the
reference cluster assigned to each of these groups. By com-
paring with the ground truth diagram (see Fig. 7c), we can
observe a few errors in the topological classification. In part
1 (Fig. 7a), there are eight misclassified clusters, but these
errors correspond to short clusters, so confusion does not
last long. Red arrows show important points where errors
occur. First error occurs at a corridor that was not explored
in reference trajectory, it gets misclassified as cluster 5, and
5 actually corresponds to other similar corridor. The other
red arrow points a case where we misclassify as cluster 19
(stairs), but it actually corresponds to other nearby stairs. In
part 2 (Fig. 7b), we can also observe that incorrect group
classification do not last too long. The only long error oc-
curs at the beginning, where the system takes long to realize
that it has left the initial cluster.

6. Conclusions and Future Work

We have described a wearable catadioptric vision sys-
tem designed to research on personal assistance applica-
tions. This work presents our novel proposal for people
ego-localization and initial guidance steps, based on state



of the art methods from autonomous mobile robots. It pro-
poses how to adapt and improve them thanks to the ad-
vantages of wearable sensors and omnidirectional vision.
Our initial experiments in this paper show promising ego-
localization results obtained in realistic settings. We also
provide a scaled visual odometry estimation, that helps the
system to track the movements of the user and the recogni-
tion of different indoor regions. This is necessary for more
intuitive interaction with users and their guidance around
the environment. Future steps require real-time integration
of all modules with additional human-machine interaction
modules in a real time system.
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