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Human navigation assistance with a RGB-D 
sensor

J. J. Guerrero, A. Pérez-Yus, D. Gutiérrez-Gómez, A. Rituerto and 
G. López-Nicolás1

Abstract: This paper focuses on the creation of a human naviga-
tion assistance prototype. The system uses a conventional RGB-D 
camera and a laptop to  analyze the environment surrounding the 
user and provides him with enough information for a safe navi-
gation. The system is designed to work indoors and performs two 
main tasks: floor and obstacle detection and staircase detection. 
Both tasks make use of the range and visual information captured 
by the sensor. The camera points downwards, allowing to acquire 
relevant navigation information without invading the privacy of 
other people. The system has been tested in real environments 
showing good results in the detection of obstacles and staircase.

Resumen: Este trabajo se centra en el diseño de un prototipo de 
asistencia a la navegación para personas. El sistema se basa en un 
sensor RGB-D portable conectado a un PC para analizar el entorno 
alrededor del usuario y facilitarle información para la navegación 
en este entorno. El sistema está diseñado para trabajar en interio-
res y realiza dos tareas principales: detección del suelo y obstácu-
los cercanos y detección de segmentos de escalera. Ambas tareas 
utilizan la información, tanto de profundidad como visual capturada 
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por el sensor. La cámara está dispuesta mirando hacia abajo para 
capturar información relevante para la navegación sin interferir en 
la privacidad de otras personas. El prototipo ha sido probado en 
entornos reales mostrando buenos resultados en la detección de 
obstáculos y escaleras.

1. Introduction

The ability of navigating effectively in the environment is nat-
ural for people, but not easy to complete under certain cir-
cumstances, such as the case of visually impaired people or 
when moving at unknown and intricate environments. Wear-
able intelligent systems are great platforms for navigation as-
sistance. Those systems can be very useful for improving or 
complementing the human abilities in order to better interact 
with the environment. In this context, project VINEA (Wear-
able computer VIsion for human Navigation and Enhanced 
Assistance) aims for the consecution of a personal assistance 
system based on visual information. This system will help 
people to navigate in unknown environments and it will com-
plement the human abilities. Possible users of this system will 
range from visually impaired people to users performing spe-
cific	tasks	that	complicate	the	visibility	or	accessing	to	poor	
visibility environments.

A personal guidance system must keep the subject away 
from	hazards,	but	it	should	also	point	out	specific	features	of	
the environment the user might want to interact with. In this 
paper,	we	present	a	system	that	benefits	of	the	use	of	new	
and affordable RGB-D cameras to assist the user navigation. 
Two	navigation	problems	are	faced	and	solved:	floor	and	ob-
stacle detection and staircase detection.
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The system uses chest mounted RGB-D camera. The cam-
era	points	to	the	floor,	capturing	the	traversable	area	in	front	
of	the	user.	This	configuration	allows	to	capture	information	
important	 for	the	navigation	(e.g.	floor	plane,	close	objects	
and obstacles) while sensitive information and privacy of oth-
er	people	is	out	of	the	field	of	view	of	the	sensor.	

RGB-D sensors provide range and color information. Range 
information is used to detect and classify the main structural 
elements of the scene. Due to the limitations of the range 
sensor, the color information is jointly used with the range 
information	 to	extend	 the	 floor	 segmentation	 to	 the	entire	
scene. In particular, we use range information for closer dis-
tances and color information is used for larger distances. This 
is a key issue not only to detect near obstacles but also to 
allow high level planning of the navigational task thanks to 
the longer-range segmentation our method provides. Once 
we	have	detected	the	floor	of	the	scene,	we	solve	the	detec-
tion and modeling of one common obstacle that a person can 
come across while moving around: the stairs. Finding stairs 
along	the	path	has	the	double	benefit	of	preventing	falls	and	
advertising	 the	 possibility	 of	 reaching	 another	 floor	 in	 the	
building. Additionally, we have developed a user interface 
that sends navigation commands via sound map information 
and voice commands.

The proposed system has been tested with a user wearing 
the prototype on a wide variety of scenarios and datasets. 
The experimental results show that the system is robust and 
works correctly in challenging indoor environments.

This work is a step forward towards the creation of a hu-
man navigation assistance tool. The technical details and 
evaluations of the detection approaches used here have been 
individually presented in papers [1] and [2].
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2. Related Work

Many different navigation assistance systems for visually im-
paired have been proposed in the literature [3]. In general, 
they do not use visual information and they need complex 
hardware systems, such as wireless communication technol-
ogy,  or ultrasonic and GPS sensors [4]. Other approaches 
propose	the	use	of	colored	navigation	 lines	set	on	the	floor	
and RFID technology to create map information, [5]. Or the 
creation	of	a	previous	floor	map	of	a	building	to	define	a	se-
mantic plan for a wearable navigation system by means of 
augmented reality, [6].

Vision sensors play a key role in perception systems be-
cause of their low cost and versatility. The work in [7] pre-
sents a system for indoor human localization based on global 
features that does not need 3D reconstruction. A disadvan-
tage of monocular systems is that global scale is not observ-
able from a single image. A way to overcome this problem is 
using stereo vision such as in [8].

In recent years, RGB-D cameras  have gained importance 
on	the	fields	of	computer	vision	and	robotics	thanks	to	their	
low price and the combination of range and color sensors. 
They capture color and depth information of the scene si-
multaneously. The depth information can help to perceive 
the shape of the scene and it is independent of textures and 
lightning conditions, however, it is usually limited to about 5 
meters. Color information complements this limit, and can 
include surface details not present in the range data. This is 
the	only	sensor	used	in	this	work,	which	benefits	from	both	
the	range	and	visual	information	to	obtain	a	robust	and	effi-
cient system.
These	kind	of	sensors	has	been	used	to	find	and	 identify	

objects in the scene [9, 10]. One step ahead is to integrate 
range systems in the navigation task. Some examples are [11], 
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where a Kinect sensor is used, [12] where range information 
is used to distinguish solid obstacles from wild terrain, or [13], 
where FAST corner detector and depth information for path 
planning tasks are used. RGB-D cameras can be also used to 
estimate the motion and the 3D structure of the scene [14]

Regarding the problems faced in our approach, we see how 
computer	vision	has	been	used	before	for	floor	and	path-seg-
mentation. The work in [15] presents a system that solves 
floor-segmentation	using	hue	and	light	information	of	the	im-
ages.	In	[16],	authors	use	a	histogram-based	road	classifier.	
In	[17],	a	method	to	find	the	drivable	surface	with	appear-
ance models is presented, and [18] shows how the fusion 
of information, in particular color and geometry information, 
improves the segmentation of the scene. We exploit this idea 
by extending the structure estimated from the depth data 
with the information from the color image.

Stairs detection has also been faced using convention-
al cameras [19], stereo vision [20] and even laser scanning 
[21].	We	find	also	approaches	using	RGB-D	as main	sensor	
and machine learning algorithms to perform the staircase de-
tection [22, 23]. Papers [24, 25] use also RGB-D cameras and 
geometric reasoning to detect the stairs. This is the approach 
we have consider in our method for stair detection. We start 
from	the	traversable	area	detected	with	our	floor	detection	ap-
proach and detect and model staircase with one or more steps.

3. Prototype setup

There are many options to locate a camera or a RGB-D sen-
sor for a wearable navigation system [26]. The RGB-D device 
provides range information from active sensing by means of 
infrared sensor and intensity images from a standard camera. 
We have chosen a chest-mounted system so the sensor re-
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mains	 fixed	 to	 the	body	
comfortably for the user 
that can move freely. 
The sensor points to the 
front of the user at all 
the times being able to 
detect dangers along the 
path. We set the camera 
pointing slightly down-
wards, 45º down, this 
way the captured details 
are	mainly	the	floor	plane	
and obstacles in front of 
the user. The set up can 
be seen in Fig. 1.

This camera set-
up	 can	 be	 classified	 as	
sousveillance, opposed 
to surveillance (where 
the	camera	is	fixed	to	an	

outside	object	of	the	environment).	Our	configuration	shows	
a great potential to be used for personal safety and security, 
improved eyesight or augmented reality.

Currently, the RGB-D sensor is connected to a laptop car-
ried in a backpack and performing all the computations. The 
algorithms	are	implemented	in	C++	language	for	ROS	(Robot	
Operating System), OpenCV library for image processing and 
PCL (Point-Cloud Library) to process the range data.

4. Floor and obstacle detection

Our	approach	to	detect	the	floor	plane	and	the	obstacles	in	it	
is performed in two main steps. First, using the range data, 

Fig. 1 Wearable camera position: the RGB-D 
sensor is chest mounted and it looks down-
wards 45º; the laptop where all the compu-
tation is carried on is on the backpack. The 
image shows the field of view of the sensor 
(green) and the axis of the scene (X’-Y’-Z’) 
and the sensor (X-Y-Z).
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we	detect	 the	 floor	and	 the	objects	close	 to	 the	user.	 In	a	
second	step,	the	floor	plane	detected	 is	extended	using	the	
image data.

4.1. Floor segmentation

Given the range data, we 
segment it in planes us-
ing the plane model and 
RANSAC algorithm. Once 
the planes have been de-
tected, we identify the most 
important scene planes ana-
lyzing the normal vector of 
each plane and considering 
that the scene follows the 
Manhattan World [27] mod-
el that assumes that the en-
vironment has three main 
directions which are orthog-
onal between them. We are 
able to assign the labels ob-
stacles or floor to the data. 
Fig. 2  shows images of the 
steps of this process.

4.2. Floor expansion using image information

The maximum reliable distance of the acquired range data is 
around 3,5 m, enough for obstacle avoidance but not enough 
for path planning in the guiding assistance. To extend the 
floor	detected	and	obtain	the	whole	surface	of	the	traversable	
ground we include the color information. Range data and the 
RGB	data	are	calibrated,	so	the	detected	floor	can	be	project-

Fig. 2 Process of the segmentation meth-
ods used.
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ed in the image. We refer to the image projection of the de-
tected	floor	plane	as	floor-seed.	Starting	from	this	floor-seed	
region,	we	will	segment	the	image	surface	to	expand	the	floor	
detected in the range data. Two image segmentations will be 
used	depending	on	the	image:	Polygonal	floor	segmentation	
and Watershed segmentation.

4.2.1. Polygonal floor segmentation

This method uses the lighting, hue and image geometry to 
segment	the	image.	First,	the	image	is	filtered	using	the	shift	
mean algorithm over a pyramid of images. The result of this 
step	 is	a	smoothed	 image,	where	 the	floor	surface	 is	more	
homogeneous than in the original image while the boundaries 
with the obstacles are preserved. Next, we compare the light-
ing	of	the	filtered	 image	with	the	 lighting	of	the	floor-seed.	
This is done by comparing the lighting histograms. Pixels sat-
isfying the lighting criteria are then evaluated using a hue cri-
teria. This criteria uses Back Projection to check how well the 
checked	pixels	fit	the	distribution	of	the	hue	histogram	of	the	
floor-seed.	These	two	criteria	allow	to	select	the	image	pixels	
with	high	probability	of	being	part	of	the	floor	plane	given	its	
lighting	and	hue	values.	The	final	step	of	this	method	is	a	po-
lygonal segmentation. Lines in the image are computed using 
the Canny edge detector and Hough line transform. Detected 
lines are extended to image borders and the image is seg-
mented	using	the	polygons	defined	by	these	lines.	The	whole	
process	is	shown	in	the	first	column	of	Fig.	3.

4.2.2. Watershed segmentation

When the number of detected lines is too low, too high 
or the line distribution in the image is too heterogeneous, 
Watershed segmentation [28] is used. This algorithm takes 
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the binary image resulting from the Canny edge detector as 
input and produces an image segmentation based in this in-
formation. Second column in Fig. 3 shows the process of this 
method.

Once the image has been segmented with one of the two 
methods,	we	use	the	reference	floor-seed	area	to	determine	
which	regions	belong	to	the	floor.	Segments	overlapping	with	
the	floor-seed	and	not	overlapping	with	any	obstacle	are	la-
beled	as	floor.

Fig. 3 Process of the floor segmentation in the range data. (Top-left) RGB 
image. (Top-right) Range data point cloud. (Bottom-left) Filtered range 
data point cloud. (Bottom-right) Floor segmentation (green) and obsta-
cles (blue and red).
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Our method is able to select between both segmentation 
methods automatically by evaluating if the detected lines are 
enough to run the polygonal segmentation.

5. Stairs detection

The stairs detection is performed in the range data provided 
by the sensor. The whole sensor reading is reoriented using 
the	floor	plane	detected	using	the	process	described	in	Sec-
tion	4.	The	origin	of	coordinates	is	defined	in	this	plane:	y-ax-
is	is	defined	in	the	plane	normal	direction,	and	height	0	is	set	
on the plane surface.

5.1. Segmentation of the scene

A region growing strategy is used to segment the range data. 
regions	 are	 afterwards	 classified	 as	 planar	 and	 non-planar	
using RANSAC. Following this process the planes found are 
closed regions corresponding to one single element, not a set 
of uncorrelated points in the scene [24]. The segmentation is 
performed following the next steps:

Normal estimation (Fig. 4a): For each point and a group 
of K neighbors, the third component obtained from Principal 
Component Analysis corresponds to the normal direction. In 
this step the curvature of the surfaces is also computed.

Region-growing (Fig. 4b): This algorithm starts from a 
seed, which is the point with minimum curvature, and then 
expands the region towards the neighboring points that have 
small angle between the normal and similar curvature val-
ue. Points that satisfy the normal and curvature threshold 
became the new seeds and repeats until the region cannot 
expand anymore.
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Planar test (Fig. 4c): Region-growing produces regions 
that	have	a	high	degree	of	flatness,	but	they	can	also	be	a	
curved surface with smooth transitions. RANSAC algorithm 
seeks for the biggest plane in each region: if most of the 
points are inliers, it will be considered a planar surface with 
the plane equation obtained; otherwise, the regions will be 
considered obstacles.

Fig. 4 Planes segmentation and classification for stair detection.
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Planes extension (Fig. 4d): Points not belonging to any 
region are included in a planar region if the angle between 
their normal and the planar region normal and their distance 
to the plane are small.

Euclidean cluster extraction (Fig. 4e): The points not 
belonging to any region go through a cluster extraction al-
gorithm which establishes connections and forms separate 
entities, considered obstacles.

Plane classification (Fig. 4f): Once the segmentation 
stage	has	succeeded	the	planes	are	classified	among	different	
classes according to the orientation and relative position of the 
planes.	Planes’	normal	are	compared	 to	 the	 floor	normal	 to	
detect horizontal and vertical surfaces (walls). Any plane not 
considered	as	vertical	or	horizontal	is	classified	as	obstacle.
Horizontal	planar	regions	can	be	floor,	steps	or	other	ob-

stacles. Planar regions with height close to zero are considered 
floor. Regions with positive or negative height that satisfy the 
Technical	Edification	Code2	(13	cm	≤	height	≤	18.5	cm)	are	
considered as step candidates. The existence of at least one 
step candidate activates the stair detection algorithm.

5.2. Stair detection algorithm

The detection algorithm establishes connections between the 
step candidates to group the stair planes in levels and discard 
the candidates that do not belong to the staircase. Step can-
didates	are	analyzed	one	by	one	starting	 from	a	first	step:	
step	candidates	whose	centroid	distance	 to	 the	floor	 is	be-
low a threshold are considered first step candidates. Start-
ing from these first step candidates, the connectivity with 

2 Ministerio de Fomento. Gobierno de España - Código Técnico de la Ed-
ificación,	Documento	Básico	de	Seguridad	de	Utilización	y	Accesibilidad	
(DB-SUA, Sección 4.2).
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other step candidates is checked using neighbor search and 
Kd-trees.	The	first	step	must	be	connected	to	the	floor.	If	no	
first step candidate is detected, the algorithm concludes that 
there is no staircase.

A special case occurs when there is just one step. In this 
case,	strict	area	and	shape	conditions	need	to	be	verified.	

As a result of the stair detection algorithm, a set of con-
nected regions corresponding to different levels is obtained 
(Fig. 5). When all the candidates have been checked, if the 
number of stair levels is greater than one, we proceed to 
model the staircase.

5.3. Stair modeling

Our staircase model uses the next parameters: step width, 
tread length, riser height and number of steps. We apply 
Principal Component Analysis (PCA) to each set of points 
corresponding to the tread of the step in each level of the 
staircase to compute the width, length and height of each 
step	(Fig.	6(a))	and	define	the	bounding	box	of	the	step.	As	

Fig. 5 Connectivity between step candidates: ascending and descending 
staircases (a), and more than one region per level (b).

A B
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Fig. 6 (a) Principal components of the steps (blue-green-red) and the 
bounding rectangles (white). (b) diagram representing the components.

Fig. 7 Estimated model staircase. Top images show the parallelograms 
corresponding to the found steps. Bottom images show all the steps.
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the height is small it can be considered negligible, consider-
ing the step as a two-dimensional rectangular bounding box 
(Fig. 6(b)). 
We	define	extent	as	the	ratio	of	the	area	of	the	concave	

hull including the points and the area of the rectangle. The 
extent is used to measure the quality of the detected step as 
it relates the area occupied by the points with respect to the 
area they are supposed to occupy.

The analysis is repeated for all the stair levels, considering 
the addition of different regions at the same level  to form a 
unique step. Each step has different dimensions and orien-
tations depending on the quality of the measurements, the 
position	of	the	steps	with	respect	to	the	camera	or	the	filters	
performance. At each level, we will choose the best step as 
the one with higher extent value among the steps within a 
valid width range.

Once all the levels have been analyzed, the staircase is 
modeled. Steps are then modeled as parallelograms whose 
width is the width of the best step, the height is the average 
vertical distance between consecutive steps and the length 
the mean horizontal distance between the edge of every two 
consecutive steps. Once we have all the parameters, we can 
use them to validate the staircase detection or discard it, and 
in case of positive results we can trace the model and even 
extend the information to non-detected steps (Fig. 7).

6. User interface

Finally, we propose a simple interface that gives information to 
the user according to the results provided by the presented al-
gorithms. This interface provides audio instructions and sound 
map information. Audio instructions will be used only for high 
level commands, available free path information, or in danger-
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ous situations, where the user could collide with an obstacle. 
In this case, the system will warn about the situation and will 
give the necessary instructions. In the rest of cases, the sound 
map will send stereo beeps whose frequency depends on the 
distance	 from	 the	 obstacle	 to	 the	 person.	We	have	 defined	
the safety area from the user to any obstacle as two meters. 
A known drawback of audio systems is that they may block 
other natural sounds. However, our system does not provide 
constantly audio instructions or beeps so the possible blocking 
of natural sounds will only appear sporadically. The user may 
also regulate the volume of the system so he could hear natu-
ral sounds and audio instructions at the same time. 

The interface will produce beep sounds depending on the 
distance from the user to the obstacle. For example, if the left 
wall is closer to the user than the right one, the user will hear 
a high frequency beep in his left ear and a low frequency beep 
in the right ear. If the wall is placed in front of the person, the 
beep will be Heard in both ears. These beeps allow the user 
to understand the environment. With this user interface, the 
user will be able to navigate through an unknown scenario as 
well as being able to avoid obstacles with no risk of collision.

7. Experiments

Next sections detail the experiments performed to test the 
different methods proposed in this work. The methods have 
been evaluated in real scenarios exhibiting a wide variety of 
visual characteristics and lighting conditions.

7.1. Datasets used for the experiments

We have tested the algorithm in public and private build-
ings. The public ones are placed in University of Zaragoza 
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(Spain) and they are: Ada Byron building, Torres Quevedo 
building	and	I+D	building	where	Institute	of	Engineering	In-
vestigation of Aragón (I3A) is placed. The private buildings 
are examples of houses and a garage. Since the number 
of datasets to test approaches for navigation assistance is 
almost non-existent we have released our dataset,3 which 
collects data used in our experiment to be available to the 
research community. Additionally, scenarios including stairs 
were	also	recorded	to	conduct	specific	experiments.	We	have	
also evaluated our system using the dataset of the Technis-
che Universität München (TUM)4 and the dataset compiled 
by Tang et al. compiled in [24].

7.2. Floor and obstacle detection testing

Fig.	 8	 presents	 results	 of	 our	 floor	 detection	 algorithm	 on	
some typical corridor images available in our dataset, and 
the TUM dataset. Even in the presence of hard conditions (i.e. 
brightness,	reflections),	we	obtain	good	results.	

A quantitative analysis is shown in Table 1. This table 
shows	the	performance	of	floor	detection	obtained	just	with	
range data and when the whole system is used. For these 
results,	the	floor	of	150	images	has	been	manually	labeled.	
Table shows precision, recall and F1 statistic values. The re-
call	confidence	interval	is	also	computed	in	the	last	column	at	
the	95%	confidence	level.	

The precision obtained with range data is 100% in all sce-
narios. These perfect precisions are caused because of short-
range hardware limitations and because the range sensor is 
unable to obtain range data of regions which are closed to 

3 http://webdiis.unizar.es/%7Eglopez/dataset.html.
4 http://vision.in.tum.de/data/datasets/rgbd-dataset
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an object’s boundary, producing conservative results. On the 
other hand, recall has low values due to these limitations.

The best recall results using just the range data correspond 
to sequences where there is no sun light (Garage and Ada By-
ron bldg.). However, for the rest of sequences the results are 
weak. Is in those sequences where the use of both range and 
image data advantages are shown.  Range segmentation is 
limited due to solar light so recall is lower than 80% (55% for 
the TUM dataset). Adding the color information improves the 
recall to 95%.

Fig. 8 Results of the floor detection and expansion. Each row shows a 
different example. First column shows the original RGB image. Second 
column shows the floor detected in the range data. Third column shows 
the image segmentation used that is chosen automatically for each im-
age. Finally, fourth column, shows the complete detected floor which is 
the traversable area to be used to guide the user.
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Percentages	of	floor-segmentation	with	range	data

Scenario Precision Recall F1 Recal interval

13A building 100% 78,62% 87,87% 78,62	+	4,79%

Ada Byron bldg. 100% 84,23% 91,43% 84,23 ± 1,08%

Torres Quevedo 100% 78,95% 88,10% 78,95	+	3,51%

Garage 100% 87,63% 93,38% 87,62	+	1,68%

München dataset 100% 54,54% 69,01% 54,54 ± 6,82%

Percentages	of	floor-segmentation	with	range	and	color	data

Scenario Precision Recall F1 Recal interval

13A building 98,74% 96,74% 97,81% 97,00	+	1,20%

Ada Byron bldg. 98,97% 95,22% 97,04% 95,00 ± 1,30%

Torres Quevedo 99,26% 97,38% 98,30% 97,00	+	1,00%

Garage 99,62% 93,62% 96,49% 94,00 ± 1,82%

München dataset 99,09% 96,23% 97,62% 96,00	+	1,60%

Table 1 Results of the floor detection evaluat-
ed with the annotated ground truth.

Scenario Range segmentation Color segmentation

13A building 26,53% 73,47%

Ada Byron bldg. 43,34% 56,66%

Torres Quevedo 54,92% 45,08%

Garage 74,22% 25,78%

München dataset 56,62% 47,38%

Table 2 Contribution to the final result of the 
range and color segmentation.

Table 2 shows the contribution of each part of the algo-
rithm, range segmentation and color segmentation, to the 
final	floor	result.	In	order	to	obtain	a	fair	comparison	in	metric	
units,	we	need	to	project	the	image’s	floor	without	projective	
distortion to have a top view of it in real magnitude. Other-
wise, the farther the segmented region is in the projective 
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image, the less number of pixels it contains (despite rep-
resenting similar metric area tan closer regions). We have 
calculated	the	homography	from	the	 image	to	the	floor	and	
we have obtained the number of squared meters segmented 
by range and color algorithms. Table 2 shows that the expan-
sion of the range segmentation with color segmentation is 
important in all scenarios. Scenarios where there is no solar 
light have the highest contribution of range segmentation. 
Scenarios with medium-low solar light incidence we obtain a 
contribution of 50% approximately with both kind of segmen-
tations. Those scenarios where the presence of solar light is 
really high, the color segmentation has the highest contribu-
tion,	more	 than	70%	of	 the	detected	floor	 is	obtained	with	
this part of our algorithm, reducing drastically the limitations 
of the range data. 

7.3. Stair detection experiments

To test the stair detection algorithm we use the Tang data-
set. The results with this dataset were successful even in to-
tal darkness (Fig. 9). We tested for false positives and false 
negatives using this dataset and compared our results with 

Fig. 9 Results of the stair detection. Last column shows results obtained 
in dark environments.
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methods in [24] and [25] (Fig. 10). We achieve better results 
with no false negatives as in [25] but also without false pos-
itives.

If we look at the step detection rate according to the posi-
tion of the step in the staircase (Fig. 11) we see how behav-
ior changes when facing ascending staircase or descending 
steps. When the user faces a descending staircase the whole 
staircase can be seen by the sensor, but self occlusion of con-
secutive steps and quality of the measurements decreases 
with the distance so the rate detection of further steps de-
creases. In the case of ascending staircases the steps remain 
close and visible for the sensor as they rise, although visual 
angle decreases. In general, steps higher than the seventh 
position	are	out	of	the	field	of	view	of	the	camera.

We have quantitatively analyzed the resemblance of the 
model to the real staircase. We have excluded the width from 

Fig. 10 Comparison of false negatives 
and false positives between our work 
and the approaches presented by [24, 
25].

Fig. 11 Step detection rate with the 
step position in the staircase.
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the analysis as the view of the stairs may be partial and it is 
not as relevant as the other measurements. After computing 
the height and length of staircases, in both ascending and 
descending perspectives, from different viewing angles, the 
results were compared to the real measurements. Real stairs 
have a length of 30cm and a height of 15cm. The mean val-
ues for the computed length and height where 29 cm and 
15.4 cm respectively. Half of the experiments were conducted 
with real people going up and down the stairs. Obstructing 
the view of the staircase partially does not adversely affect 
the quality of the model, length and height were 29.39 cm 
and 15.56 cm respectively in these cases. Some pictures of 
the experiments with people climbing up/down the staircase 
can be seen in Fig. 12. 

7.4. Computation time

One important point of a navigation system is that it has 
to be able to run on real time, while the user moves. We 

Fig. 12 Examples of stair detection with occlusions of the steps.
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have tested the computation times of the method proposed. 
The	whole	floor	and	obstacle	detection	algorithm	(Range	data	
processing, RGB image processing and user interface gener-
ation) runs approximately at 0.3 frames/s.  The stair detec-
tion iteration time ranges from 50 to 150ms. The variation 
depends on the scene itself: close up captures provides good 
quality clouds and the segmentation algorithm provides less 
regions and as a consequence, faster results.

We consider this timing fast enough for indoor navigation 
assuming walking speeds around 1-1:5m/s.

This rate could be improved adding some optimizations to 
the algorithm or using multi-core processing.

8. Conclusions

In this work we have presented a navigation assistance pro-
totype able to guide a person through an unknown indoor 
environment avoiding obstacles and detecting staircases. The 
system uses a chest mounted RGB-D camera that captured 
the relevant information of the scene without intruding the 
privacy of nearby people.

The prototype uses the data captured by the sensor to 
detect	the	floor	plane	and	close	obstacles,	and	the	staircases	
visible. Floor and obstacles are detected in the range data, 
allowing to navigate safely in the area close to the user. The 
floor	detected	 in	 the	range	data	 is	extended	 later	 in	 image	
using the color information. Additionally, the environment is 
analyzed in the search of staircases close to the user. This 
analysis is performed also on the range data.

The system has been tested in different real environments 
showing good better performance than other state-of-the-art 
techniques and the computations can be run on real time. 
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